The Kv4.2 Potassium Channel Subunit Is Required for Pain Plasticity

نویسندگان

  • Hui-Juan Hu
  • Yarimar Carrasquillo
  • Farzana Karim
  • Wonil E. Jung
  • Jeanne M. Nerbonne
  • Thomas L. Schwarz
  • Robert W. Gereau
چکیده

A-type potassium currents are important determinants of neuronal excitability. In spinal cord dorsal horn neurons, A-type currents are modulated by extracellular signal-regulated kinases (ERKs), which mediate central sensitization during inflammatory pain. Here, we report that Kv4.2 mediates the majority of A-type current in dorsal horn neurons and is a critical site for modulation of neuronal excitability and nociceptive behaviors. Genetic elimination of Kv4.2 reduces A-type currents and increases excitability of dorsal horn neurons, resulting in enhanced sensitivity to tactile and thermal stimuli. Furthermore, ERK-mediated modulation of excitability in dorsal horn neurons and ERK-dependent forms of pain hypersensitivity are absent in Kv4.2(-/-) mice compared to wild-type littermates. Finally, mutational analysis of Kv4.2 indicates that S616 is the functionally relevant ERK phosphorylation site for modulation of Kv4.2-mediated currents in neurons. These results show that Kv4.2 is a downstream target of ERK in spinal cord and plays a crucial role in pain plasticity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The A-type potassium channel Kv4.2 is a substrate for the mitogen-activated protein kinase ERK.

The mitogen-activated protein kinase ERK has recently become a focus of studies of synaptic plasticity and learning and memory. Due to the prominent role of potassium channels in regulating the electrical properties of membranes, modulation of these channels by ERK could play an important role in mediating learning-related synaptic plasticity in the CNS. Kv4.2 is a Shal-type potassium channel t...

متن کامل

Protein kinase a mediates activity-dependent Kv4.2 channel trafficking.

The A-type potassium channel subunit Kv4.2 influences hippocampal function through regulation of dendritic excitability, and changes in Kv4.2 surface expression alter synaptic plasticity. Recent data from our laboratory demonstrate that EGFP (enhanced green fluorescent protein)-tagged Kv4.2 channels located in dendritic spines are internalized in an activity-dependent manner after synaptic stim...

متن کامل

Regulation of Dendritic Excitability by Activity-Dependent Trafficking of the A-Type K+ Channel Subunit Kv4.2 in Hippocampal Neurons

Voltage-gated A-type K+ channel Kv4.2 subunits are highly expressed in the dendrites of hippocampal CA1 neurons. However, little is known about the subcellular distribution and trafficking of Kv4.2-containing channels. Here we provide evidence for activity-dependent trafficking of Kv4.2 in hippocampal spines and dendrites. Live imaging and electrophysiological recordings showed that Kv4.2 inter...

متن کامل

Voltage-gated ion channel accessory subunits: sodium, potassium, or both?

Commentary The voltage-gated potassium channel subunit Kv4.2 is a pore-forming alpha subunit of A-type potassium channels. Kv4.2, encoded by the KCND2 gene, is broadly expressed in the central nervous system and is predominantly localized on neuronal dendrites, with increased density on distal dendrites (1). A-type potassium channels are important regulators of neuronal excitability, modulating...

متن کامل

Kv4.2 knockout mice display learning and memory deficits in the Lashley maze

Background: Potassium channels have been shown to be involved in neural plasticity and learning. Kv4.2 is a subunit of the A-type potassium channel. Kv4.2 channels modulate excitability in the dendrites of pyramidal neurons in the cortex and hippocampus. Deletion of Kv4.2 results in spatial learning and conditioned fear deficits; however, previous studies have only examined deletion of Kv4.2 in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2006